Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment – Nature Genetics

  • Easwaran, H., Tsai, H.-C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54, 716–727 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Heppner, G. H. & Miller, B. E. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev. 2, 5–23 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baron, M. et al. The stress-like cancer cell state is a consistent component of tumorigenesis. Cell Syst. 11, 536–546.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893.e13 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 1271–1279 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reitman, Z. J. et al. Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nat. Commun. 10, 3731 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855.e19 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Baron, M. et al. The stress-like cancer cell state is a consistent component of tumorigenesis. Cell Syst. 11, 536–546.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dirkse, A. et al. Stem cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun. 10, 1787 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cazet, A. S. et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat. Commun. 9, 2897 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, W. et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12, 80 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, M. et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118–1130 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous. Cell Carcinoma Cell 182, 1661–1662 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cantini, L. et al. Classification of gene signatures for their information value and functional redundancy. NPJ Syst. Biol. Appl. 4, 2 (2018).

    PubMed 

    Google Scholar 

  • Hu, Z. et al. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37, 226–242.e7 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, Q. H. et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat. Commun. 9, 2028 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brady, S. W. et al. Combating subclonal evolution of resistant cancer phenotypes. Nat. Commun. 8, 1231 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Borden, E. C. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat. Rev. Drug Discov. 18, 219–234 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).

    PubMed 

    Google Scholar 

  • Vilgelm, A. E. & Richmond, A. Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy. Front. Immunol. 10, 333 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, S. et al. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS One 7, e32542 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunn, G. P., Koebel, C. M. & Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Park, I. A. et al. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One 12, e0182786 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25, 2392–2402 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Cherian, M. G., Jayasurya, A. & Bay, B.-H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat. Res. 533, 201–209 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, R. et al. Metallothionein 2A expression is associated with cell proliferation in breast cancer. Carcinogenesis 23, 81–86 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Pereira, H. et al. Metallothionein expression in human breast cancer. Breast 1, 159–160 (1992).

    Google Scholar 

  • Pedersen, M. Ø., Larsen, A., Stoltenberg, M. & Penkowa, M. The role of metallothionein in oncogenesis and cancer prognosis. Prog. Histochem. Cytochem. 44, 29–64 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246.e13 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251.e22 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, D. et al. Integrated analysis reveals tubal- and ovarian-originated serous ovarian cancer and predicts differential therapeutic responses. Clin. Cancer Res. 23, 7400–7411 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma. Nat. Commun. 10, 5367 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aiello, N. M. et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45, 681–695.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cook, D. P. & Vanderhyden, B. C. Transcriptional census of epithelial-mesenchymal plasticity in cancer. Sci. Adv. 8, eabi7640 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baylor, S. M. & Berg, J. W. Cross-classification and survival characteristics of 5,000 cases of cancer of the pancreas. J. Surg. Oncol. 5, 335–358 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • Al-Shehri, A., Silverman, S. & King, K. M. Squamous cell carcinoma of the pancreas. Curr. Oncol. 15, 293–297 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed 

    Google Scholar 

  • Weis, S. M. & Cheresh, D. A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17, 1359–1370 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Viallard, C. & Larrivée, B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20, 409–426 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Solinas, G., Germano, G., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 86, 1065–1073 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, M. et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7, 19 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, A. et al. Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, K. W., Marshall, E. A., Bell, J. C. & Lam, W. L. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 39, 44–54 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Williams, J. B. et al. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat. Commun. 11, 602 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kinker, G. S. et al. Pan-cancer single cell RNA-seq uncovers recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinberg, R. A. The Biology of Cancer (Garland Publishing, 2007).

  • Zaidi, M. R. & Merlino, G. The two faces of interferon-γ in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Archetti, M. & Pienta, K. J. Cooperation among cancer cells: applying game theory to cancer. Nat. Rev. Cancer 19, 110–117 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pu, W. et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12, 6058 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14, 632 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galgano, M. T., Hampton, G. M. & Frierson, H. F. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod. Pathol. 19, 847–853 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, L., O’Bryan, J. P., Smith, H. S. & Liu, E. Overexpression of matrix Gla protein mRNA in malignant human breast cells: isolation by differential cDNA hybridization. Oncogene 5, 1391–1395 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Kosanam, H. et al. Laminin, gamma 2 (LAMC2): a promising new putative pancreatic cancer biomarker identified by proteomic analysis of pancreatic adenocarcinoma tissues. Mol. Cell. Proteom. 12, 2820–2832 (2013).

    CAS 

    Google Scholar 

  • Zheng, B. et al. TM4SF1 as a prognostic marker of pancreatic ductal adenocarcinoma is involved in migration and invasion of cancer cells. Int. J. Oncol. 47, 490–498 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Jothy, S., Yuan, S. Y. & Shirota, K. Transcription of carcinoembryonic antigen in normal colon and colon carcinoma. In situ hybridization study and implication for a new in vivo functional model. Am. J. Pathol. 143, 250–257 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jing, X., Piao, Y.-F., Liu, Y. & Gao, P.-J. Beta2-GPI: a novel factor in the development of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 136, 1671–1680 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Landers, K. A. et al. Identification of claudin-4 as a marker highly overexpressed in both primary and metastatic prostate cancer. Br. J. Cancer 99, 491–501 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, S. Y., Aurelio, O. N., Jan, K., Zavada, J. & Stanbridge, E. J. Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Cancer Res. 57, 2827–2831 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Allander, S. V. et al. Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. Cancer Res. 61, 8624–8628 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • West, R. B. et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol. 165, 107–113 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinf. 11, 367 (2010).

    Google Scholar 

  • Carmona-Saez, P., Pascual-Marqui, R. D., Tirado, F., Carazo, J. M. & Pascual-Montano, A. Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinf. 7, 78 (2006).

    Google Scholar 

  • Csardi, G., Nepusz, T. The igraph software package for complex network research. InterJournal 1695 (2006).

  • Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford) 2019, baz046 (2019).

    Google Scholar 

  • Mullen, K. M., van Stokkum, I. H. M. & Mullen, M. K. nnls: The Lawson-Hanson algorithm for non-negative least squares (NNLS). R package version 1.4 https://CRAN.R-project.org/package=nnls (2015).

  • Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Barkley, D. Code for the analyses described in Barkley et al. Nature Genetics. Zenodo https://doi.org/10.5281/zenodo.6611786 (2022).

  • Leave a Comment

    Your email address will not be published.